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A Multilocus Model of the Genetic Architecture
of Autoimmune Thyroid Disorder, with Clinical Implications

Veronica J. Vieland,1,2,3,* Yungui Huang,1 Christopher Bartlett,1,2 Terry F. Davies,4 and Yaron Tomer5

We report here a preliminary model of the genetic architecture of Autoimmune Thyroid Disorder (AITD). Using a flexible class of math-

ematical modeling techniques, applied to an established set of data and supplemented with information both from candidate-gene and

genome-wide-association studies and from basic bioinformatics, we find strong statistical support for a model in which AITD is the result

of ‘‘hits’’ along three distinct genetic pathways: affected individuals have (1) a genetic susceptibility to clinical AITD, along with (2) a sep-

arate predisposition to develop the autoantibodies characteristic of AITD, and they also have (3) a predisposition to develop high levels

of autoantibodies once they occur. Genes underlying each of these factors then appear to interact with one another to cause clinical

AITD. We also find that a genetic variant in CTLA4 that increases risk for AITD in some people might actually protect against AITD

in others, depending on which additional risk variants an individual carries. Our data show that the use of statistical methods for the

incorporation of information from multiple sources, combined with careful modeling of distinct intermediate phenotypes, can provide

insights into the genetic architecture of complex diseases. This model has several clinical implications, which we believe will prove

relevant to other complex diseases as well.
Autoimmune thyroid disease (AITD [MIM 608173]) in-

cludes a number of conditions that share common cellular

and humoral immune responses targeted at the thyroid

gland. AITD includes Graves’ disease (GD [MIM 275000])

and Hashimoto’s thyroiditis (HT [MIM 140300]), both of

which are characterized by the infiltration of the thyroid

by T and B cells that are reactive with thyroid antigens and

the production of thyroid autoantibodies (TAB), with the

resultant clinical manifestations.1 Although some evidence

has been found that there might be genes specific to either

GD or HT,2,3 there is also considerable evidence of genes

common to both and, in fact, of genes common to multiple

autoimmune diseases, such as AITD and Type I Diabetes.

Genes known to play a role in AITD include HLA,3,4

CTLA4 (MIM 123890), thyroglobulin (TG [MIM 188450]),3

THSR,1 and CD401 (MIM 109535). An additional class of

genes implicated in multiple autoimmune diseases is the

protein tyrosine phosphatases (PTP). Genome-wide associ-

ation studies (GWAS) have recently reported associations

between PTPN2 (MIM 176887) and both Type 1 Diabetes

and AITD;5,6 a different PTP gene, PTPN22 (MIM 600716)

has also been implicated in AITD as well as in other auto-

immune diseases.1,3

Among the genes known to be associated with AITD,

cytotoxic T lymphocyte antigen-4 (CTLA4) on 2q33 is one

of the most well-studied genes.3,7 Associations with several

CTLA4 SNPs have been established, with the most widely

replicated of these being association with the G allele of

the A49G SNP (rs57563726), which has been consistently

found in multiple studies involving over 15,000 individ-

uals in all.7 This allele has also been shown to alter T cell

phosphorylation patterns in a cohort of normal individ-
The Am
uals.8 This suggests a possible gene pathway involving

both CTLA4 and genes in the PTP superfamily. Note too

that KIAA0350, which was recently reported to be associ-

ated with AITD and Type 1 diabetes on the basis of

GWAS,5,6 contains an immunoreceptor tyrosine-based

inhibitory motif, as does CTLA4.

Given that HLA, the PTP superfamily, and CTLA4 have

all been implicated in other autoimmune disorders, as

well as in AITD, a picture is beginning to emerge of a path-

way that may serve as a background to development of

autoimmunity in general. As might be expected, each of

the known background genes appears to contribute only

a small risk of disease. In particular, CTLA4 is estimated

to confer a relative risk of just 1.3–1.7.7 It seems likely

that additional AITD-specific genes remain to be discov-

ered and virtually certain that AITD genetic architecture

involves gene-gene interactions.

An additional issue in the modeling of the genetic archi-

tecture of AITD is that little is known about the genetics of

TAB. High TAB levels are pathognomonic of AITD, and

elevated levels in clinically unaffected individuals are

used to predict AITD risk. Understanding of the genetic re-

lationship between TAB and AITD therefore seems crucial to

understanding the mechanisms underlying AITD develop-

ment. But all AITD patients initially have high TAB levels,

which are subsequently reduced with treatment. Hence,

parsing of the genetic regulation of TAB versus that of

AITD itself is difficult, requiring both appropriate data

sets and also statistical methods that can be tailored to

this particular situation.

In order to model the role of CTLA4 in the genetic archi-

tecture of AITD and TAB, we took advantage of a large set of
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pedigrees (N ¼ 102, comprising 742 individuals, of whom

540 were genotyped), ascertained for the presence of at

least two members with clinical AITD (GD or HT) and at

least four available first-degree relatives from two genera-

tions (avg. number of AITD individuals per pedigree ¼
2.6). This study had institutional review board approval.

GD was diagnosed by (1) documented clinical and bio-

chemical hyperthyroidism requiring treatment, (2) a dif-

fuse goiter, (3) the presence of TSHR antibodies, and/or

(4) diffusely increased I-131 uptake in the thyroid gland.

HT was diagnosed by (1) documented clinical and bio-

chemical hypothyroidism requiring thyroid-hormone re-

placement and (2) the presence of autoantibodies to thy-

roid peroxidase (TPO). These families were previously

analyzed for linkage to AITD with the use of LOD scores,2

yielding evidence of linkage to 6p, 8q, and 10q, with max-

imum multipoint heterogeneity LOD scores of 2.0, 3.5,

and 4.1, respectively.

Here we go beyond the search for individual loci to the

modeling of more complex phenotypic relationships and

gene-gene interactions. Novel data utilized in the current

analyses include TAB as a quantitative trait. For purposes

of these analyses, TAB was taken to be the maximum read-

ing obtained from assays for antithyroglobulin (Tg) and

anti-TPO; in both cases antibodies were measured by

specific radioimmunoassay (Kronus). TAB was assayed in

all available unaffected relatives (N ¼ 222). In addition, for

these analyses all samples were genotyped at the associated

CTLA4 A49G SNP.

The previous 10 cM microsatellite genome scan was also

available for all families. In brief, these data were generated

as follows: DNA was extracted from whole blood through

use of the Puregene kit (Gentra Systems), and the Perkin El-

mer microsatellite panel (version 2.0, total of 400 markers)

were typed as reported elsewhere;2 an additional 36

markers were run in regions of interest prior to the current

analyses (including CTLA4 A49G). PCR products were gen-

erated with standard protocols followed and processed

with an ABI 310 genetic analyzer (Applied Biosystems). Al-

lele calling was done with Genotyper 2.0 software. Marker

data were cleaned for the presence of Mendelian inconsis-

tencies, and Merlin9 was run in regions of interest to detect

unlikely double recombinants; the repeating of analyses

with potential genotyping errors removed did not change

results reported here.

All analyses were conducted with the software package

KELVIN,10 which implements the PPL class of models for

measurement of the strength of genetic evidence.11,12 The

PPL is parameterized in terms of a general approximating

likelihood, and all parameters of the trait model are then in-

tegrated out, permitting the use of Bayes’ theorem for com-

putation of the posterior probability of the hypothesis of

interest. All results were based on multipoint analysis;

Hardy-Weinberg equilibrium has been assumed through-

out. The Rutgers combined genetic map was used.13–15

In modeling of the genotype-phenotype relationship,

definition of the phenotype is critically important. Because
1350 The American Journal of Human Genetics 82, 1349–1356, June
we were interested in the genetic relationship between

AITD and TAB, we considered three distinct models: (A)

AITD, which considers AITD alone as a dichotomous

(Y or N) trait, independent of TAB; (B) TAB, which treats

TAB (presence/absence) as an independent risk factor for

development of AITD; and (C) TAB/AITD, under which

TAB is an underlying risk factor for AITD, with clinical

AITD being a manifestation of high levels of TAB under

a classical quantitative-trait-threshold model. (We lack suf-

ficient data in these particular pedigrees to search for TAB

alone as a quantitative trait.)

Accordingly, three basic models were utilized in the anal-

yses presented here. The first is a simple dichotomous trait

model, with parameters a (the standard admixture parame-

ter of Smith,16 representing the proportion of ‘‘linked’’ ped-

igrees), p (the disease-allele frequency), and the penetrance

vector fi (i ¼ 1..3, representing the probability that an indi-

vidual with genotype i develops disease, for each of the

three possible genotypes: DD, Dd, and dd). As with all forms

of the PPL, the trait parameters are integrated out of the final

statistic; while the gene frequency is integrated over its full

range, an ordering constraint is imposed on the penetrances

such that f1 R f2 R f3. This model has been shown to repre-

sent a robust approximation for the mapping of complex

traits,17–19 and because the parameters are integrated out

of the underlying likelihoods, no specific assumptions re-

garding their values are required. This model was used for

AITD, with only AITD individuals considered ‘‘affected’’ re-

gardless of TAB status; and for TAB, with all individuals with

either AITD or TAB > 0.30 (the lower limit of laboratory pre-

cision) considered ‘‘affected’’ for TAB. (Recall that all AITD

individuals have elevated TAB.)

The second model is a variation on the quantitative-

trait-threshold model described in detail in20,21 (For addi-

tional details on the PPL method in general see 21). The

trait locus is parameterized in terms of a and p, as above,

but the trait distribution is parameterized as a mixture of

continuous probability density functions, one for each

trait genotype. In the case of TAB, which has a floor value

at 0.3 (Kronus units/ml), we use a mixture of c2s, which

gives an excellent empirical fit to the overall data. In addi-

tion, in order to take full advantage of all of the (dichoto-

mous and quantitative) data in modeling of the AITD-TAB

relationship, we extend this basic quantitative-trait model

to include a threshold parameter t, such that any affected

individual is presumed to have an underlying TAB value

greater than t and, similarly, any unaffected individual is

presumed to have a value less than t. As in the case of

the dichotomous trait, all parameters of the trait model

are then integrated out: thus, in this case the integration

is over a, p, a vector of three c2 means (degrees of freedom),

and t. Again an ordering constraint is placed on the means.

For purposes of these analyses, individuals with AITD were

considered affected, whereas unaffected individuals with

TAB R 0.3 were assigned their quantitative TAB levels. (Re-

call that in AITD patients, levels of TAB are reduced by treat-

ment; thus, quantitative values in affected individuals are
2008



not genetically useful phenotypes.) Unaffected individuals

with a measured TAB < 0.3 were coded as unaffected. This

model enables us to parse genetic contributions to AITD

and TAB through simultaneous analysis in the same set of

pedigrees.

The final model used here is a simple variant of each of

the models just described, in which instead of using a sin-

gle ordered vector of penetrances (or means, in the case of

the quantitative-trait-threshold model), we parameterize

the model in terms of two separate penetrance (mean)

vectors, allowing the penetrance (mean) to differ between

individuals who are GG or GA at the A49G CTLA4 SNP and

individuals who are AA.10 This gives rise to the epistasis

PPL, or E-PPL. As previously, the additional parameters

are integrated out of the final model. (While allowing the

Figure 1. Baseline PPLs for AITD, TAB, and
TAB/AITD
(A) Baseline PPLs for AITD.
(B) Baseline PPLs for TAB.
(C) Baseline PPLs for TAB/AITD.
The x axis represents the genome in Kosambi cM
units for chromosomes 1- X. The y axis shows
the PPL on the probability scale, representing
the probability of a gene for the given phenotype
at each position.

means to differ across CTLA4 genotype clas-

ses, we constrained the threshold to be the

same regardless of CTLA4 status.) In this

way we explicitly model two-locus epistasis,

in which the penetrance (mean) at any

given locus is allowed to depend upon the

genotype at CTLA4. A further extension of

this method would be to model three-locus

interactions; however, this is not feasible at

present for computational reasons.

The PPL is on the probability scale, and its

interpretation is therefore straightforward:

a PPL of, for instance, 40% means that there

is a 40% probability of a trait gene at the

given location on the basis of these data.

For biological reasons and on the basis of ear-

lier calculations,22 the prior probability at

each location is set to 2%, so that PPLs >

2% indicate (some degree of) evidence in

favor of the location as the site of a trait

gene, whereas PPLs< 2% represent evidence

against the location. The PPL is a measure of

statistical evidence, not a decision-making

procedure; therefore there are no ‘‘signifi-

cance levels’’ associated with PPL values

and the PPL is not interpreted in terms of

its associated error probabilities.23–26 Never-

theless, it may assist readers to have some

sense of scale relative to more-familiar fre-

quentist test statistics. In a simulation of

10,000 replicates under the null hypothesis (no trait gene

at the location being tested), PPLs of 5%, 25%, and 80%

were associated with Type 1 error probabilities of 0.02,

0.0009, and 0.0001, respectively.17 Because all model

parameters are integrated out of the PPL, its scale remains

constant across models. Thus, these results apply to all anal-

yses conducted here. (By contrast, maximized statistics need

to be ‘‘adjusted’’ for the number of parameters over which

they are maximized.) We note too that, again, because it is

ameasureofevidence rather thana testofhypothesis, amul-

tiple-testing correction is not applied to the PPL, just as one

would not ‘‘correct’’ a measure of the temperature made in

one location for readings taken at different locations.

Figure 1 shows results for the baseline genome scan.

Overall, 72% of the genome showed evidence against the
The American Journal of Human Genetics 82, 1349–1356, June 2008 1351



presence of a trait gene (PPL < 2%) for AITD (Figure 1A),

and 95% of the genome showed PPLs < 5%. Against this

very clean baseline, six peaks (on 5p14, 8q24, 10q11,

10q21, 10q26, and 12q23) stand out. The peak on chromo-

some 8q24 is within a few cM of the thyroglobulin gene

(TG), a region implicated in earlier linkage studies.1,3

TAB analysis greatly strengthened evidence of a gene on

6p22 and suggested a potential new locus on 18p11, in

the vicinity of PTPN26 (Figure 1B). Note too the small

but clearly visible peak on 2q33, which contains CTLA4.

Each of these loci lines up with an attractive immune can-

didate gene or region. Interestingly, none of the six large

peaks for AITD recur in Figure 1B, suggesting that genes

that cause susceptibility to TAB in AITD patients can be dif-

ferent from genes that increase risk of AITD in the presence

of TAB.

Figure 2. Locations of CTLA4 Interactors,
Detected by Epistasis Analysis, for AITD, TAB,
and TAB/AITD
(A) Locations of CTLA4 interactors for AITD.
(B) Locations of CTLA4 interactors for TAB.
(C) Locations of CTLA4 interactors for TAB/AITD.
The x axis represents the genome in Kosambi cM
units for chromosomes 1- X. The y axis shows E-
PPL (epistasis) minus baseline PPL (no epistasis)
at each position; thus, the scale of the y axis dif-
fers from that of Figure 1. Because the E-PPL in-
volves integration over the full parameter space,
including both ‘‘epistasis’’ and ‘‘no epistasis’’
models, this difference will be> 0 in the presence
of evidence supporting epistasis and < 0 in the
presence of evidence against epistasis, with the
magnitude of the difference (positive or nega-
tive) indicating the relative strength of evidence
for or against interaction with CTLA4. Note that
PPL differences have been set to equal 0 (no evi-
dence for or against epistasis) over the region
containing CTLA4 itself.

TAB/AITD analysis revealed two new

peaks (Figure 1C) on 4q32 and 10p12 and

produced a substantially higher PPL over

the original AITD peak on 8q24. Again, it

appears that genes that regulate quantita-

tive levels of TAB can be distinct from both

genes conferring susceptibility to AITD

and genes determining susceptibility to

the presence or absence of TAB.

We then rescanned the genome for epi-

static interactions involving CTLA4. Inter-

estingly, this analysis did not detect any

loci unseen in baseline analyses. However,

three of the loci detected at baseline show

substantial evidence of interaction with

CTLA4 (10q21, 10q26 under the AITD

model, and 8q24 under the TAB/AITD

model), indicating that genetic effects at

these loci are subject to modification by the CTLA4 geno-

type (Figure 2).

Along with PPLs, KELVIN also reports the maximizing

(maximum likelihood) trait model. Caveats apply when

one interprets the numerical values of parameters esti-

mated in this way (including the fact that consideration

of only the point estimates themselves might obscure

dimensions in which the surface is essentially flat, as well

as more arcane issues27). However, all other things being

equal, this constitutes a statistically rigorous (approximat-

ing) procedure for estimation of trait parameters.28–31 We

took advantage of this feature to examine the epistasis

results in more detail.

We had anticipated that epistasis at the interacting loci

(8q24, 10q21, and 10q26) would confirm G as the risk-con-

ferring allele, consistent with the association data from our
1352 The American Journal of Human Genetics 82, 1349–1356, June 2008



group and others. This would manifest itself as increased

genotypic relative risk (in the case of the dichotomous

ATID model) among carriers of both the G allele and the

high-risk genotype(s) at an interacting locus or as corre-

sponding increases in the differences between genotypic

means (in the case of the quantitative TAB/AITD model).

Table 1 shows effect-size estimates for each of these loci.

On 8q24 and 10q26, AA individuals have no increase or

only a very slight increase in estimated risk even when

they carry the high-risk 8q24 genotypes or the high risk

10q26 genotypes. By contrast, the combination of the D

allele and the G CTLA4 allele produces dramatic pheno-

typic effects at both loci. (Note that when the penetrance

for dd individuals is estimated to be 0, the genotypic

relative risk is undefined, or effectively infinite.) Thus, for

these two loci, the G allele does appear to be the risk-

conferring allele.

However, on 10q21, carriers of the CTLA4 G allele and

the DD risk genotype have at most a very modest estimated

increase in risk, while CTLA4 AA homozygous individuals

with the high risk 10q21 genotype are the ones at greatly

increased risk of disease. Thus, notably, on 10q21 it is actu-

ally the AA CTLA4 genotype that increases risk.

It is also of interest to note the estimated threshold

values under the TAB/AITD model: these are 23, 0.3, 23,

and 8, on 3q27, 4q32, 8q24, and 10p12, respectively. The

Table 1. Effect of CTLA4 Genotypes on Relative Risks at
Interacting Loci

Genotype at CTLA4: GG/GA Genotype at CTLA4: AA

Locus

Genotype at

Locus: DD

Genotype at

Locus: Dd

Genotype at

Locus: DD

Genotype at

Locus: Dd

8q24 15* 5* 0 0

10q21 4 1 N* 1

10q26 N* N* 2 2

For the AITD model (10q21 and 10q26), the effect size is estimated as the

ratio of the penetrance for DD or Dd individuals, respectively, to the pene-

trance in dd individuals, where DD etc. are the unobserved disease geno-

types at the locus in question. A risk ratio of N indicates that the

estimated penetrance for the dd genotype was 0. For the TAB/AITD model

(8q24), the effect size is estimated as the corresponding differences in

genotypic means. These quantities are therefore not directly comparable

between row 1 (differences in mean) and rows 2 and 3 (relative risks) of

the table.

* High-risk two-locus genotype.
The Am
common clinical rule of thumb is that TAB R 3 (Kronus

units) represents a change in level of risk for AITD. How-

ever, if the threshold actually depends upon the specific

combination of genes involved for any particular individ-

ual with AITD, then it should be possible to modify this

rule on the basis of more specific knowledge of genetic

architecture. This could illustrate a realistic type of applica-

tion of personalized genomic medicine for many complex

disorders.

In view of the known involvement of some PTP family

genes in AITD, we also investigated whether any addi-

tional PTP genes localized to our PPL peaks. We conducted

a GO-term search based on two Biomart builds because the

annotations between these databases are not synchro-

nized. From a list of GO terms associated with both

PTPN2 and PTPN22, we searched for ‘‘protein tyrosine

phosphatase’’ (GO: 4725) and ‘‘phosphoric monoester hy-

drolase activity’’ (GO:16791). Between the two databases,

a total of 246 unique genes were identified; however, after

restriction of the list to independently annotated genes

common to both databases, just 120 genes remain. Figure 3

shows the locations of these genes superimposed on a sum-

mary PPL plot. We also include PLD1 (3q27) and GPLD1

(6p22) (which each appear in one of the two databases),

because the activity of CTLA4 has been demonstrated to

be dependent on phospholipase D activity.32

Intriguingly, several of the PPL peaks coincide with

genes from the PTP superfamily. Although this is far from

conclusive, we view these PTP genes as prime candidate

genes for additional study.

Table 2 contains a summary of salient results. Here, we

list all loci with PPL > 25% (corresponding in some sense

to p values < 0.0009). We have also included 2q33 and

18p11, which were picked up under the TAB model. From

a biological perspective, given the model under which we

detect them, these peaks might be anticipated to contain

genes relating to general immune response and therefore

to be relatively nonspecific to AITD. This would tend to

make effect sizes in the AITD sample (and, perhaps, in gen-

eral) relatively small and more difficult to detect. Indeed,

there is strong prima facie support for this conjecture on

2q33 (over CTLA4), if not also on 18p11.6

Assembling these results into a unifying model (Figure 4),

we begin to see an outline of the CTLA4-related genetic

architecture of AITD as a complex interplay among
Figure 3. All Detected PTP-Related
Genes, Shown as Individual Dots, Super-
imposed on a Summary PPL Graph
For summary purposes, each chromosome is
plotted under the phenotypic model that
maximizes the PPL on that chromosome;
for chromosome 10, because there are
multiple peaks maximizing under different
phenotypic models, the plot is based on
the models that maximize the PPL within
each of four segments of the chromosome.
erican Journal of Human Genetics 82, 1349–1356, June 2008 1353



Table 2. Summary of Salient Results

Chromosome Position (cM) PPL (%)* Phenotypic Model Closest PTP-Related Gene**

2q33 218 8 TAB CTLA4 at 215 cM

3q27 190 32 Epistasis TAB/AITD PLD1 at 187.7 cM

5p14 47 28 AITD —

4q32 172 44 TAB/AITD —

6p22 50 38 TAB GPLD1 at 50 cM

8q24 132 90 Epistasis TAB/AITD —

10p12 44 69 TAB/AITD PTPLA at 42.4 cM

10q11 69 52 AITD PTPN20B at 67 cM

10q21 82 98 Epistasis AITD KIAA1274 at 88.9 cM

10q26 156 86 Epistasis AITD PTPRE at 159.8 cM

12q23 113 28 AITD —

18p11 36 14 TAB PTPRM at 29.6 cM; IMPA2 at 42.6 cM***

* The PPL is on the probability scale and has a direct interpretation as the probability of a gene for the specified phenotype at a particular location given

the data at hand. Note also that PPLs reported here for the epistasis models are the actual E-PPLs rather than the differences (E-PPL � PPL) plotted in

Figure 2.

** Also of potential interest from the GO-term search are MTMR6, which is visible in Figure 3 over the small peak on chromosome 13 (at 14 cM); and DUSP6,

near a secondary peak of 24% on chromosome 12 at 102 cM.

*** An association to PTPN2, also in 18p11, has been found with both Type 1 diabetes and AITD.5
multiple genes, with distinct genes for each of the three

phenotypic models. Thus, clinical AITD appears to be the

result of ‘‘hits’’ along (at least) three separate genetic paths:

a genetic susceptibility to AITD; a predisposition to develop

the autoantibodies characteristic of AITD; and a propensity

to develop high levels of TAB once disease development be-

gins. Superimposed upon this collection of genes are inter-

actions across phenotypic categories. For instance, CTLA4

itself appears to regulate propensity to develop TAB (Y or

N), while interacting with both genes that predispose one

to AITD and genes that regulate quantitative levels of TAB.

Perhaps of most immediate relevance to other complex

disorders is the finding that it is not only the associated

CTLA4 G allele that is risk-conferring but, against certain

specific genetic backgrounds, it can apparently be the A al-

lele that is deleterious. The consistent association with G in

population studies is, then, presumably due to the higher

prevalence of those interacting factors for which G rather

than A is the deleterious variant (or, possibly, in strong dis-
1354 The American Journal of Human Genetics 82, 1349–1356, June
equilibrium with a separate deleterious variant), but the rel-

ative prevalence of interacting factors is a matter of popula-

tion history and structure rather than of underlying biology.

Thus, even within the same gene, different alleles at a single

SNP might be associated with risk in different subsets of pa-

tients. These findings are relevant to the wealth of new asso-

ciations being detected by genome-wide association studies.

Identification of these subsets will be essential for the de-

sign of targeted treatments based on the immunogenetic

mechanisms causing disease. Therapies targeted to alter-

ation of the disregulated immunological pathways associ-

ated with the G allele would be beneficial in some patients,

but they could be harmful or ineffective in those patients

whose disease is associated with the A allele. Indeed,

genetic background is emerging as a significant factor af-

fecting efficacy of therapeutic modalities in several condi-

tions, such as hypertension.33 These findings not only sug-

gest a new line of research into the role of CTLA4 in

autoimmune disease but, also, suggest that associations
Figure 4. Preliminary Model of CTLA4
Mediation of the Genetic Architecture
of AITD
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based on aggregate data at the population level should be

interpreted with care before being merged into clinical

practice. This also illustrates that differences in population

history can change which of the two SNP alleles is the as-

sociated allele at a true disease locus, a possibility to keep

in mind when interpreting replication studies.

It is still unclear whether the other known AITD-related

genes (TSHR, CD40, and HLA itself) form a part of the same

pathway diagrammed in Figure 4 or whether they partici-

pate in independent pathways leading to the AITD pheno-

type under an expanded ‘‘locus heterogeneity’’ model in

which each component of the model is actually a separate

network of genes rather than an independently operating

single locus. Full exploration of this possibility will require

the modeling of interactions among more than two loci at

a time. In principle this requires only a trivial extension of

the current PPL framework. However, at present it remains

a challenge on purely computational grounds. This will be

a major focus of our further computational developments.

It also remains to be seen whether typical human data sets

will carry enough information on higher-order interac-

tions to be useful or whether the search for genetic archi-

tecture at that level of complexity will require recourse to

model organisms.

Even though the particulars of our proposed model

await molecular confirmation, it seems clear to us from

the present study that considerable information regarding

complex genetic architecture can be recovered from hu-

man data sets under the right circumstances. These circum-

stances will include measurement and modeling of sets of

related phenotypes; incorporation of allelic associations

and linkage information into unified analyses; and, as

bioinformatics resources continue to develop, supplemen-

tation of statistical modeling with bioinformatically ob-

tained information about gene networks and pathways.
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